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Abstract
When building smaller, less expensive spacecraft,
there is a need for intelligent fault tolerance vs.
increased hardware redundancy. If fault tolerance can
be achieved using existing essential navigation
sensors, cost and vehicle complexity can be reduced.
A maximum-likelihood-based approach to thruster
fault detection and identification (FDI) for spacecraft is
developed here and applied in simulation to the X-38
space vehicle. The system uses gyro signals to detect
and identify hard, abrupt single- and multiple-jet on-
and off-failures. Faults are detected within one second
and identified within one to five seconds.

1. Introduction

The FDI system presented here was developed
through application to two specific thruster-controlled
spacecraft presently under development at NASA
Johnson Space Center: the X-38 [11] and the
miniAERCam. Its application to the X-38 is presented
in this paper.

The Crew Return Vehicle (CRV) consists of a manned
space vehicle, the Entry Vehicle  (EV), based on a
lifting body design, and a De-orbit Propulsion Stage
(DPS). The CRV is designed to remain docked to the
space station in a dormant mode for several years
until needed by the crew in an emergency. The X-38
(vehicle 201) is the unmanned test vehicle for the
CRV. Both vehicles are designed to maneuver on-
orbit, de-orbit, and land using a large parafoil.

The DPS includes a set of axial and RCS thrusters fed
by three mono-propellant hydrazine tanks. Although
the CRV will have pressure sensors in the thrusters to
detect failures, the X-38 has only temperature
sensors. In this research, a fault detection and
identification system is developed that uses only gyro
signals (angular rates) to detect and identify single-
and multiple-jet hard-on or hard-off thruster failures.
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Figure 1: x38, with entry vehicle and de-orbit
propulsion stage [7]

Related research
Deyst and Deckert [2] developed a maximum-
likelihood based approach for detecting leaking
thrusters for the Space Shuttle orbiter s RCS jets. The
method for detecting soft failures was also extended
to detect hard RCS jet failures. The maximum-
likelihood method presented in that work is used and
extended in this research.

Wilson and Rock [9] [10] developed a fault detection
and identification method based on exponentially
weighted recursive least squares estimation using
accelerometer and angular rate sensors. A neural
network then provided adaptive control reconfiguration
to multiple destabilizing hard and soft thruster failures.
This was applied to a 3-degree-of-freedom air-bearing
vehicle.

2. Problem definition
Hard, abrupt, thruster failures resulting from a single
point of failure (in valves, plumbing, electronics, etc.)
are monitored. These can include single- or
simultaneous multiple-jet failures in either a failed-on
or failed-off condition. The DPS has 8 axial thrusters
(500 Newtons thrust level each) that fire along the
longitudinal axis of the vehicle, providing the required
de-orbit thrust for the 13,600 kg vehicle. During the 8-
to-15-minute de-orbit burn, six of the eight thrusters
fire continuously, controlled open loop, with the six
chosen symmetrically to produce minimal torque on
the vehicle. The DPS also contains 8 reaction control



system (RCS) thrusters (106 Newtons thrust level
each) that are fired in sets of two or four by the
attitude control system to control the roll, pitch, and
yaw about the body axes. The entry vehicle (EV) has
a completely separate set of RCS thrusters for use
after DPS separation — those are not considered here.
Figure 2 is a rear-view schematic of the X-38 showing
EV RCS, DPS RCS, and DPS axial thrusters. The
axial thrusters fire directly back along the x-axis, and
the DPS RCS thrusters fire in the y-z plane, with no x-
axis component.
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Figure 2: X-38 thruster configuration, coordinates
in vehicle structural frame

Accelerometers and ring-laser gyros in the Honeywell
Space Integrated GPS / INS (SIGI) [8] are available
for monitoring vehicle motions. Temperature sensors
in the thrusters provide failure information as well, but
the response time limits the ability to detect failures
quickly — they rise in about one second, but cool over
a period of minutes. At this point, the Fault Detection
and Identification (FDI) system has been developed
without using temperature information, but it could be
added at a later point. Thruster faults will be detected
by comparing vehicle motions (at this point, only gyros
are used, but accelerometers would enable even
more accurate FDI) to the vehicle motions that would
result if certain failures have occurred.

Equations of motion
Starting with Euler s dynamical equation, and
assuming the spacecraft inertia matrix is constant, the
equations of motion (EOM) are [1]

)~(1 ωωτω II −= −&
or

where I is the spacecraft inertia matrix, ω is the
angular velocity of the body-fixed frame with respect

to an inertial reference frame, and τ  is the sum of all
torques on the body. ω~  represents a matrix-multiply
implementation of the cross product.

Simulation
Several unknown random variations are added to this
dynamic model, including (values given are the 3-
sigma value of a Gaussian distribution about the true
or nominal value): gyro noise of 0.03 degrees/second;
pulse-to-pulse thruster strength variability of 15%;
constant thruster strength bias of 5%; inertia matrix
elements constant bias of 5%; constant mass bias of
1%; and center of mass (CM) location offset of 5 mm
along x- and y-axes and 25 mm along the z-axis.
These values are all conservative estimates (i.e., at
least as large as the actual) based on the actual X-38
design.

A dynamic simulation was developed using MATLAB
[6]. As with the X-38 design, the control loop runs at
10 Hz, and unfiltered gyro data is read at 50 Hz. The
FDI runs at 10 Hz. A controller that regulates to a
commanded attitude calculates the thruster
commands, the EOM from above, including the
random variations, are integrated, the FDI system
detects and identifies failures, and a MATLAB-based
visualization displays the vehicle status and FDI
results as shown in Figure 4.

3. Fault detection and
identification

There are several FDI approaches reported in the
literature [4], all of which perform well on certain
applications. The on-off nature of the thrusters present
in the class of applications addressed here limits the
viability of many general methods. For example, if a
thruster has failed off, but is not commanded to fire, it
appears to be working correctly.

It is generally true in identification or detection
systems that reducing the degrees of freedom to be
considered or otherwise constraining the problem will
improve identification or detection performance. As
will be discussed at the end of this section, some
alternative approaches were initially used to solve this
problem that attempted to find the strengths of the un-
failed thrusters as well as finding the failures. This
approach worked well on a simplified version of the
problem, but failed when all 16 thrusters were present,
both on and off failures were considered, mass
properties were allowed to vary within tolerance, and
in the presence of gyro noise. This led to the
approach described below, which solves the problem



taking full advantage of the problem statement —
namely that only a single failure mode can be present,
and that it will appear abruptly.

3.1 Summary of the algorithm
At every control update, the measured (estimated)
angular acceleration is compared to that expected by
a dynamic model of the nominal system. This vector is
compared with the vector of angular accelerations
corresponding to each possible failure mode. When a
clear match is found (the likelihood is sufficiently
higher than all other possibilities), a failure is declared.
Specifics regarding filtering and other calculations
follow.

3.2 Cataloging failure modes
For every possible failure mode, the unexpected
acceleration,  ectedun expα , that would result if the mode

were present and active  is calculated. An off  failure
is said to be active if the thruster is commanded to
fire; an on  failure is active if it is not commanded to
fire. Multiple-jet failure modes require cataloging of
each combination of thrusters that may be active. For
example, failure mode #1 corresponds to RCS jet 1
being failed off. The ectedun expα  for this mode is [-

0.0144, -0.0015, 0.0045] rad/sec2 for the body roll
pitch and yaw axes, meaning that if RCS jet 1 is
commanded to fire, and it has failed off, the actual
measured angular acceleration should exceed the
expected acceleration by these values. This
cataloging is done pre-flight, and the acceleration
values are updated periodically based on the state of
the blowdown (the strength of all thrusters drops as
the tanks empty).

3.3 Estimating angular acceleration
The angular acceleration of the vehicle is calculated at
each FDI update (10 Hz) based on the previous 6
gyro samples (sampled at 50 Hz, so 6 points cover
one full control interval including both end points).
Assuming small angular rates (so axes are de-
coupled), and that acceleration is constant during
each control time period (corresponding to thruster
firing times), the acceleration is estimated by fitting a
line to the data and taking the slope as shown by the
solid lines in Figure 4 below. This least-squares fit is
implemented as a linear FIR filter, and is
computationally efficient. An alternate approach fit
three contiguous line segments to 16 points (covering
3 control intervals), and took the slope of the middle
segment. This was marginally better, but was not
implemented because of the extra computation and
the need to wait one sample period for the
information.
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Figure 3: Estimation of angular acceleration

3.4 Calculating expected (nominal) acceleration
The expected acceleration is calculated assuming no
failures are present and all physical parameters are at
their nominal value. N is the number of thrusters.
Fnom,k, an N-by-1 vector containing the expected force
from each individual thruster at time step, k, is
calculated as:

blowdownnomkknom FTF Γ=,

Where Tk is an N-by-1 vector of 1 s and 0 s indicating
which thrusters are commanded to fire, Fnom is the
nominal strength of each thruster at full tank pressure,
and Γ blowdown is a scalar multiplier representing the
reduction in thrust with reduced tank pressure.

τnom,k, an N-by-1 vector containing the expected torque
on the vehicle about the nominal center of mass (CM)
due to the thrusters is calculated as

knom
T

knom FDL ,, )( ×=τ
Where L is an N-by-3 matrix containing the x-y-z
location of each thruster in the body frame, D is an N-
by-3 matrix of unit vectors indicating the direction of
thrust in the body frame, and Fnom,k is from above.

The nominal angular acceleration, is then calculated
using the equation of motion from Section 2, the
nominal torque calculated above, the nominal
spacecraft inertia, Inom, and measω~ and measω which

come directly from the gyros.

)~( ,,,
1

, kmeasnomkmeasknomnomknom II ωωτω −= −&

The 
ectedun expα  is calculated as the difference between

the expected (nominal) and measured angular
accelerations.



3.5 Windowing
If the signal-to-noise ratio were high enough,
maximum likelihood FDI analysis of the ectedun expα
readings could be carried out on the values at each
time step as was done in [2]. However, in this
application, values from multiple time steps must be
combined to reduce the noise. Since it is known that
failures will occur abruptly, a windowing method is
preferred over an IIR (e.g., exponential) filter that
would carry through information for longer. In this
application a window size of 10 (equal to one second)
was found to provide a good balance between speed
of response and noise reduction. Also, a minimum of
5 samples was required before maximum likelihood
FDI analysis would proceed for a given failure mode.

3.6 Collecting measurements for each failure
mode
As mentioned earlier, one of the challenges of FDI for
systems with on-off actuators is that failures are only
observable at certain times. For example, off  failures
are observable only when the jets are commanded to
fire. For each failure mode, only the relevant

ectedun expα  measurements are stored. So for failure

mode #1, any time RCS jet 1 is commanded to fire,
the resulting ectedun expα is logged. These two steps of

windowing and collecting data can be considered a
type of filtering; however implementation as described
here avoids introducing any phase lag between the
cause (thruster firings) and effect (vehicle motions)
that would bias the FDI.

3.7 Maximum likelihood
Although the acceleration estimator is nonlinear and
non-optimal, it is reasonable to assume that the
estimated unexpected acceleration readings,

ectedun expα , are normally distributed about the true

unexpected acceleration values, 
ectedun expα . So the

probability density for the true unexpected
acceleration values, 

ectedun expα , conditioned on the

measurement history M, is [2] [3]
( )ectedun

T
ectedun P
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where
ectedunectedunectedun expexpexp

~ ααα −=
and Pα is the estimation error covariance matrix of the
unexpected acceleration.

Given unexpected acceleration measurements,

ectedun expα , and knowing the true unexpected

acceleration values, 
iectedun ,expα , for each possible

failure mode, the most likely failure mode is found by

finding the iectedun ,expα that maximizes this probability

density function. The subscript i indicates the failure
mode number corresponding to the unexpected
acceleration. This function is maximized when the
likelihood argument, λ i, in the following expression is
minimized:

( ) ( )ecteduniectedun
T

ecteduniecteduni P exp,exp
1

exp,exp ααααλ α −−= −

This expression is used both to detect and to identify
failures.

3.8 Fault detection
At each FDI update, for each possible failure mode, λ i

is evaluated using the windowed readings (as
described earlier, each failure mode s window
contains readings for samples only when the failure
could be observable — e.g., when failed-off thruster is
commanded to fire). The likelihood argument
corresponding to no failure, λ i0, is evaluated using the
same windowed readings, but with zero substituted for

iectedun ,expα . When the ratio of likelihood arguments,

λ i/λ i0 is falls below a threshold, a failure is declared as
having been detected. Since it is important to identify
the correct failure mode before declaring it, further
tests are performed, as described below. Evaluation
of individual λ i0 s for each failure mode is critically
important — evaluating λ0 based on all (windowed)
data may not indicate a failure if a failed-off thruster
has not fired recently.

3.9 Fault identification
Once a fault has been detected, at each FDI update,
the likelihood arguments, λ i, are compared to certain
thresholds and to each other. For a fault to be
declared identified, λ i must be below a low  threshold,
while no other faults are below a high threshold. To
prevent flickering of fault declarations that would be
caused by noise, once a fault has been declared
identified, it will remain that way until λ I rises above a
medium  threshold. This hysteresis is effective at

preventing flickering of fault identifications.

Some faults are virtually indistinguishable from one
another, such as this set of four (referring to Figure 2):
axial 1 off, axial 2 off, axial 5 on, axial 6 on. This is
because each mode produces nearly identical
unexpected accelerations. The on vs. off thrusters
could be distinguished if translational accelerations
were measured and used for FDI. The approach taken
here to identify the correct failed thruster is to alter the
axial firing pattern (e.g., changing from 1-2-3-5-6-7 on
to 2-3-4-6-7-8 on) while maintaining symmetry. Since
the firing pattern is adjusted to identify the failed
thruster, once the failure has been identified, the
pattern is left in a state that does not cause a problem.
So if the thruster has failed off (on), it is commanded



to stay off (on), providing reconfiguration as well as
fault detection and identification in this case.

3.10 FDI based on RLS analysis
An initial attempt at solving the FDI problem for the X-
38 was based on recursive least squares (RLS)
analysis. As had been done in [9], thruster parameters
were identified using an exponentially weighted RLS
algorithm. This approach did not provide sufficiently
reliable FDI for the X-38 application for three main
reasons:
1. Relatively high noise levels were present (due

primarily to gyro noise and pulse-to-pulse thruster
variations).

2. Exponential weighting meant that thrusters fired
relatively sparsely (e.g., RCS thrusters as
compared to axial thrusters) were not identified
well

3. Since axial thrusters are fired six at a time, and
held on continuously, observability of those
parameters was very low.

A second, targeted  RLS-based approach used
multiple RLS algorithms, each one identifying the
strength of a single thruster with the assumption that
all other thrusters are operating nominally. This
effectively addressed problems 2 and 3 above, but
problem 1 remained. Also, the assumption that all
other thrusters are nominal causes partial false
positives when the failed thruster fires at the same
time a good thruster fires. Methods were developed to
address the remaining problems, but results were not
sufficiently reliable, leading to development of the
maximum likelihood-based method.

3.11 Efficiency, Extensions
Many of the terms needed in this analysis, such as

iectedun ,expα , can be pre-computed or computed

periodically. The algorithm is then relatively efficient. It
scales better than linearly as more failure modes are
added, since some information is shared between
analyses of different failure modes (e.g., estimating
the unexpected acceleration).

This method can be extended to include translational
acceleration as well as angular accelerations. This will
provide better discrimination between faults since the
comparison space is of higher dimension. It was not
included here since the gyros provided sufficient
performance for the X-38 application, and to
demonstrate that the method will work for systems
with gyros only.

4. FDI applied to the X-38

The FDI algorithm was applied to the X-38, with 40
different failure modes simulated, including each of
the 8 RCS and 8 axial thrusters being failed-off or
failed-on (32 single-jet failures) and 4 pairs of RCS
jets being failed off or on (8 multiple-jet failures).
Every mode has been tested multiple times and
detection and identification is always accurate and
within 5 seconds. Fault detection usually takes only
0.5 seconds, and most failures are identified within
about 1.0 second1. The switching of axial thrusters to
distinguish between similar failure modes in some
cases causes the time for identification to approach 5
seconds.

An example case is discussed here and shown in
Figure 4, for RCS jet 1 failed off. The top part of
Figure 4 shows the thruster firing history during this
33-second run. The first 8 rows show the RCS jets
pulsing to regulate attitude. Then next 8 rows show
that axial jets 2-3-4-6-7-8 were on continuously during
this run. The next 4 rows correspond to the multiple-
jet failure cases, and show when at least one of the
jets was commanded to fire. Below that is a zoomed
in shot of the detection and identification of RCS jet 1
failure. Below that is a legend corresponding to the
thruster history as well as the animation screen below.
The bottom part of the figure shows a view of the rear
of the vehicle with thrusters firing, torque monitors
indicating the net torque produced by the axial and
RCS thrusters, and the fault identification result along
with a visualization of the likelihood argument, λ i.

In this simulation, the vehicle starts off with initial
angle and rate errors that are corrected by thruster
firings in the first two seconds. RCS jet 1 abruptly fails
off at 3 seconds, indicated by the gray rectangle, but it
is not detected until it fires 23 seconds later. The fault
is detected at 26.5 seconds (indicated by the vertical
red line), after 0.6 seconds of firing, and is identified at
29.7 seconds (indicated by the change in color from
green to red), after a total of 1.0 seconds of firing.

The animation screen at the bottom of Figure 4 was
from the final update of the simulation. RCS jets 1 and
6 are both commanded to fire (as also seen in the
thruster history screen), but RCS jet 1 is drawn red,
indicating that it has failed. The axial-thruster torque

                                                       
1 Since failure modes may not be observable
depending upon whether their thrusters are
commanded to fire, the detection and identification
times listed indicate the total duration for which the
failure was observable (fired for failed-off, or not fired
for failed-on).



monitor shows minimal torque since the axial thrusters
are fired symmetrically and the CM is near the center
of the jets. The RCS-thruster torque monitor shows a
yaw and a roll torque, caused by RCS jet 6. The
likelihood monitor bars on the right side are drawn
with width equal to exp(-0.5*λ i) so they approach 1.0 if
the failure is true. RCS jet 1 is close to 1.0, and since
it has been declared failed, it is highlighted in red.
RCS jet 2 failed on produces an unexpected
acceleration signature close to that of RCS jet 1 failed
off, which is why it reads above zero (about 0.25). The
situation is similar for RCS jet 4 failed on.
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Figure 4: Example simulation run for the X-38

5. Conclusions

A maximum-likelihood-based thruster fault detection
algorithm has been presented and applied in
simulation to the X-38 spacecraft. The algorithm is
capable of reliably detecting and identifying hard,
abrupt single- and multiple-jet on or off failures within
1-5 seconds. The algorithm as presented uses gyro
signals only, making it applicable to a large number of
spacecraft; however, extension to additionally use
accelerometer signals is possible, and would provide
better discrimination between similar failures. The
algorithm is computationally efficient and scales better
than linearly with the number of failure modes to be
identified.
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